

Systemd

Starting Linux systems with a change

Systemd

NEW

BETTER

FASTER

EASIER

Everyone is DOING it

The development team is LOVED

Systemd

OK. That last one is a bit of a stretch.

OK. Not even close.

OK. Some act like a$$holes.

It's not like Linus is always nice.

Systemd

Key, I'm f*cking tired of the fact that you don't fix problems in the code *you* write, so that
the kernel then has to work around the problems you cause.

Greg - just for your information, I will *not* be merging any code from Kay into the kernel until
this constant pattern is fixed.

This has been going on for *years*, and doesn't seem to be getting any better. This is relevant
to you because I have seen you talk about the kdbus patches, and this is a heads-up that you
need to keep them separate from other work. Let distributions merge it as they need to and
maybe we can merge it once it has been proven to be stable by whatever distro that was
willing to play games with the developers.

But I'm not willing to merge something where the maintainer is known to not care about bugs
and regressions and then forces people in other projects to fix their project. Because I am
not willing to take patches from people who don't clean up after their problems, and don't
admit that it's their problem to fix.

Kay - one more time: you caused the problem, you need to fix it. None of this "I can do
whatever I want, others have to clean up after me" crap.

Linus

Systemd

Old process – Sys V

Intermediate – Upstart

New - systemd

Systemd

● Sys V
– Uses simple scripts
– Requires a shell
– Serial process

● Each unit must finish before the next can start
● Unrelated units “hang” while a broken start fails

– 15+ years of experience

Systemd

● Upstart
– Faster than sysV
– Uses D-bus for internal communications
– Parallel start up

Systemd

● Systemd
– Highly parallel
– Uses D-bus

● Working on kdbus (kernel d-bus)

– Works well with plymouth boot gui
– Can restart failed unit

● Critical unit can be watched and restarted

sysvinit Upstart systemd sysvinit Upstart systemd
Interfacing via D-Bus no yes yes Automatic serial console handling no no yes
Shell-free bootup no no yes Unique Machine ID handling no no yes

no no yes no no yes
Read-Ahead no no yes Reliable termination of services no no yes
Socket-based Activation no no yes Early boot /dev/log logging no no yes

Socket-based Activation: inetd compatibility no no yes no no yes

Bus-based Activation no no yes no no yes
Device-based Activation no no yes Gapless service upgrades no no yes

no no yes Graphical UI no no yes
Path-based Activation (inotify) no no yes Built-In Profiling and Tools no no yes
Timer-based Activation no no yes Instantiated services no yes yes
Mount handling no no yes PolicyKit integration no no yes

fsck handling no no yes no no yes
Quota handling no no yes Can list all processes of a service no no yes
Automount handling no no yes Can identify service of a process no no yes

Swap handling no no yes no no yes
Snapshotting of system state no no yes Automatic per-user cgroups no no yes
XDG_RUNTIME_DIR Support no no yes SysV compatibility yes yes yes

no no yes yes no yes
Linux Control Groups Integration no no yes SysV-compatible /dev/initctl yes no yes
Audit record generation for started services no no yes Reexecution with full serialization of state yes no yes
SELinux integration no no yes Interactive boot-up no no yes

PAM integration no no yes no no yes
Encrypted hard disk handling (LUKS) no no yes Dependency-based bootup no no yes

no no yes Disabling of services without editing files yes no yes
Network Loopback device handling no no yes Masking of services without editing files no no yes
binfmt_misc handling no no yes Robust system shutdown within PID 1 no no yes
System-wide locale handling no no yes Built-in kexec support no no yes
Console and keyboard setup no no yes Dynamic service generation no no yes

no no yes yes no yes

Handling for /proc/sys sysctl no no yes no no yes
Plymouth integration no yes yes Signal delivery to services no no yes

Save/restore random seed no no yes no no yes

Static loading of kernel modules no no yes utmp/wtmp support yes yes yes

Automatic serial console handling no no yes no no yes

Modular C coded early boot services
included

Dynamic host name and machine meta data
handling

Minimal kmsg-based syslog daemon for
embedded use
Respawning on service crash without
losing connectivity

Configuration of device dependencies with
udev rules

Remote access/Cluster support built into
client tools

Automatic per-service CPU cgroups to
even out CPU usage between them

Optionally kills remaining processes of users
logging out

SysV services controllable like native
services

Container support (as advanced chroot()
replacement)

SSL Certificate/LUKS Password handling,
including Plymouth, Console, wall(1), TTY
and GNOME agents

Infrastructure for creating, removing,
cleaning up of temporary and volatile files

Upstream support in various other OS
components
Service files compatible between
distributions

Reliable termination of user sessions
before shutdown

Easily writable, extensible and parseable
service files, suitable for manipulation
with enterprise management tools

Systemd

Systemd

● Systemd command features
– Systemctl
– Journalctl

Systemd

● Systemctl
– Used to start, stop, restart and check status

● Usage
– systemctl start foo.service
– systemctl restart foo.service
– systemctl status foo.service

Systemd

● LIVE EXAMPLE!!
– systemctl status bluetooth.service -l
– systemctl status bluetooth -l

● Assumes .service
● -l provides “long line” support

Systemd

● Systemctl also used to make service
run at boot time
– systemctl enable foo

● Can list all available services
– systemctl (messy list but LOTS of data)
– systemctl list-unit-files (easier to read)

Systemd

● Runlevels are dead
– Long live run levels!

● Targets are new hotness
– Rescue ~ single user
– Multi-user ~ run level 3/networking, no X
– Graphical ~ Xorg
– User-definable

● eg. system-update.target for safe package updates
– Logs updates with journalctl

Systemd

● How to get a list of the targets
– systemctl –-type=target (shows loaded)
– systemctl --type=target –-all (shows all)

● How to find parts of a target
– systemctl list-dependencies foo.target

● LIVE DEMO!!!

Systemd

● Changing runlevels targets
– systemctl isolate foo.target

● This will kill running services NOT in new target just
like telinit foo would do.

● This will also start additional services as required
and expected.

– For obvious reasons there will not be a live
demo :-)

Systemd

● Set target at boot
– Single user mode is rescue.target

● Add to kernel line from grub(2):

systemd.unit=rescue.target

– Can also use:
Systemd.unit=runlevel1.target

Systemd

● What hogs my startup time?
– Systemctl can display startup time data

● Show agregate start time
systemd-analyze

● Show sorted list of processes
systemd-analyze blame

● LIVE DEMO!!

Systemd

● systemctl-analyze as a Gantt Chart

systemctl-analyze plot > test.svg

● LIVE DEMO!!

Systemd

● Verbose debugging of systemd from
kernel boot
– Append to kernel boot line

systemd.log_level=debug
systemd.log_target=kmsg

Systemd

● Systemd equivalent of init files
file:///usr/lib/systemd/system/bluetooth.service

[Unit]

Description=Bluetooth service

Documentation=man:bluetoothd(8)

[Service]

Type=dbus

BusName=org.bluez

ExecStart=/usr/libexec/bluetooth/bluetoothd

NotifyAccess=main

#WatchdogSec=10

#Restart=on-failure

CapabilityBoundingSet=CAP_NET_ADMIN CAP_NET_BIND_SERVICE

LimitNPROC=1

[Install]

WantedBy=bluetooth.target

Alias=dbus-org.bluez.service

Systemd

● Automagic restart
– WatchdogSec

● WatchdogSec=10 (seconds wait before action)

– Restart
● Restart=on-failure (any exit code other than 0)

Restart settings/Exit causes no always on-success on-failure on-abnormal on-abort on-watchdog
Clean exit code or signal X X
Unclean exit code X X
Unclean signal X X X X
Timeout X X X
Watchdog X X X X

Systemd

● Journalctl
– More data than can be imagined
– Mostly very usable
– Often an overload without filtering
– Easy to filter

Systemd

● Show boot times
– Once installed, a (fairly) permament log of

every time the system is booted is kept
journalctl –list-boots

● The most recent boot number is always 0

● Show logs from a particular command
journalctl _COMM=sshd –b <foo>

– Pressing <tab> after = will display a list
– --boot <foo> will show only logs from a particular boot
– -b <null> is current boot

LIVE DEMO!!

Systemd

● Journalctl.conf
– Set size
– Set retention time
– Set location
– Accept defaults (all are reasonable)

LIVE DEMO!!

Systemd

● A single way journalctl trumps syslog:
– Show all <foo> records between two dates:

journalctl _COMM=<foo> --since “YYYY-MM-DD
HH:MM:SS” --until “YYYY-MM-DD HH:MM:SS”

● LIVE DEMO!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

